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ABSTRACT
Today’s modern automated flight control systems employ a variety of different behaviors,
or modes, in order to allow the crew flexibility in operating the aircraft. These modes lay
along a continuum starting from fully-manual to fully-automatic control, with many levels
in between. While developments in cockpit automation resulted in workload reduction
and economical advantages, they also gave rise to a special class of human-machine
problems. These ill defined problems are sometimes referred to as “automation surprises.”
These phenomena usually involve confusion about the status of the autoflight control
system—in particular its modes—and the subsequent behavior of the aircraft. Recently,
there have been five fatal airline accidents involving, in one way or another, this class of
human-machine problems.

Our research involves a two-way approach: (1) summary analysis of mode usage data,
and (2) the development of a methodology for describing human-automation interaction.
The mode usage data was collected during a field experiment that documented how
pilots, flying a Boeing B-757/767, engaged the various modes in the automated flight
control system. Analysis of the data indicated which modes are commonly used, and the
different paths that pilots use while transitioning from one mode to another. Based on
these and other analyses we developed a modeling framework for describing human
interaction with automated control systems. The framework allows us to formally
describe a given system and to trace down the features in the control system or interface
design that harbor the potential for mode confusion. One example of mode confusion is
described and modeled. The particular design feature that led to this mode confusion is
identified and explained. The implication of this framework and our research approach
for mapping human-automation interaction are briefly discussed.



- 2 -

INTRODUCTION
In recent years there has been a series of commercial aviation accidents involving highly
automated “glass cockpit” aircraft. In all of these accidents, the aircraft software and
hardware functioned properly, yet the system as a whole, failed. The common cause of
accident was some confusion, on part of the flight crew, about the status of the autoflight
control system.

Since 1988, five such accidents occurred: In the first, an Air France Airbus A-320
crashed in Habersheim-Mullhouse Airport, France, following a low altitude fly-by [4].
The crew, flying very close to the ground, engaged a mode that provides relatively slow
thrust response to throttle movement. In the second accident, an Indian Airlines A-320
crashed during a visual approach to Bangalore Airport, India [11]. The crew,
intentionally or unintentionally, engaged a pitch mode in a way that provided no speed
protection. In the third accident, an Air Inter A-320 crashed during an approach into
Strasbourg-Entzheim Airport, France. The preliminary accident report suggests that the
crew may have mistakenly engaged the wrong mode for the situation at hand [5].

In the fourth accident, a China Airlines A-300/600 crashed during an approach into
Nagoya International Airport, Japan. The crew, probably unintentionally, engaged a
mode that commanded climb with full thrust, and at the same time manually pushed the
control wheel down in order to prevent the aircraft from climbing. In a conflict between
manual versus autopilot commands, the aircraft achieved an extreme pitch attitude of 36
degrees with decaying airspeed, rolled to the right, and crashed [2]. In the fifth accident,
an Airbus A-330 conducting a routine flight test crashed shortly after takeoff from
Toulouse-Blagnac airport, France. During the initial climb-out, and according to the test-
flight program, the crew reduced power on the left engine to simulate an engine-out go-
around. With the reduction in thrust on the left engine, and a high pitch attitude (32
degrees) to acquire the 2,000 feet selected by the crew, the aircraft lost lateral control.
The high pitch altitude occurred because the altitude acquisition mode, which was
controlling the level-off maneuver to 2,000 feet, had no pitch limit protection. When the
crew regained control of the aircraft, it was at too low an altitude to allow full recovery
[6].

The way pilots use modes and the implications for managing the flight are issues of much
discussion and concern in the commercial aviation community [3]. Indeed, airlines
address this issue by designing specific training modules, developing specific procedures,
and articulating a philosophy for using flight-deck automation [9]. Nevertheless, evidence
from accidents and thousands of pilot-reported incidents suggests that confusion
regarding mode behavior is still a chronic problem in these human-machine systems [10].
It also appears that this trend is bound to escalate as newer automated systems are
developed and put into use [29].

Modes in Human-Machine Systems
Problems in human interaction with automated control systems are not unique to aviation;
similar problems are found in medical, maritime, nuclear, and space systems [18]. In the
domain of human-computer interaction, mode confusion is also a well-recognized
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problem [24,30]. Nevertheless, even the common VCR is still not free of mode
problems—most users are still baffled when they need to “program” a VCR.

What are the characteristics, then, of these systems that make them prone to such
problems? The following is a partial list:

1. Such systems are designed to perform many functions and not just one or a few.

2. The functions are either activated directly by the user or by some external
event(s).

3. For simplicity and “cleanness,” the interface includes fewer control and display
elements (e.g., buttons, icons) than the number of functions and interactions
possible.

4. In the case of dynamic systems, the user must specify (“program”) in advance
what type of behavior the system should exhibit in the future.

5. The user must be informed when these specifications cannot be fulfilled due to
some external or internal change.

6. The user must be able to intervene and modify the specifications at any time.

Most software system designed today use modes—either explicitly or implicitly—in
order to achieve the above functionality [21]. We broadly define a mode as a manner of
behaving. This general definition satisfies the use of the term within any system, be it a
biological, social, or software and hardware system. Such systems behave in a certain
manner, as a function (in the mathematical sense) of the environment [23]. Events in the
environment initiate modes within the system—the transformations from one manner of
behaving to another [1].

In complex systems the definitions become convoluted as a given machine, or a control
system in our case, is usually made of several sub-components, working in parallel. Each
of these components may have its own set of modes. Therefore, unlike a simple system
that may exhibit one mode at a time, the status of a complex system, with respect to its
modes, is a vector of all active modes. We use the term mode configuration to describe
this vector. The automatic flight control system (AFCS) of a Boeing B-757 aircraft,
exhibits numerous mode configurations. Transitions from one configuration to another
can be either initiated manually by the pilot or automatically by the machine. Similarly,
the system software initiates automatic transitions among various mode configurations
depending on pre-defined conditions.

An indivisible attribute of any mode in dynamic systems is its reference-parameter(s)
[16]. For example, “speed” is a reference parameter of most vertical guidance modes of a
modern aircraft. Reference parameters are constraints on mode behavior and can be either
continuous or a set of discrete states. This observation leads to an important insight: in
almost any system: there are several classes, or a hierarchy, of modes. For example, the
modern AFCS has two cardinal manners of behavior: “On” and “Off”—this is the first
level. When in the “On” mode, the behavior is constrained by another set of modes:
“Flight Level Change” mode, “Vertical Navigation” mode, and others—this is the second
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level. When in “Flight Level Change” mode, one constraint on behavior is the speed
setting (a reference parameter) provided by the pilot. When in “Vertical Navigation”
mode, the behavior is further constrained by a set of sub-modes: “Vertical Navigation-
Path,” “Vertical Navigation-Speed” and others—this is the third level of modes in this
system.

Problems in human-automation interaction, and in particular mode confusion, usually
result from misidentification of the machine’s behavior—its mode configurations,
transitions, and the associated reference parameters.  Such mode confusion results from
errors—the difference between actual machine behavior and what was expected by the
pilot. Some of these mode errors, or discrepancies, occur when the user takes some action
(e.g., changing a reference parameter) believing that the machine is in one mode, when in
fact it is in another [25].

Objectives
Transition between one mode configuration and another is a critical ingredient for mode
confusion [17]. Therefore, the first objective of this paper is to analyze mode usage data
in a context of the automatic flight control system of a Boeing B-757/767 aircraft. The
second objective is to present a framework for modeling human-automation interaction.
The third objective is to use the framework to describe and model a mode confusion
incident and identify the specific design feature that contributed to it.

MODE USAGE DATA

Method
Data was collected by an observer onboard an airliner during the climb-to-cruise and
descent-to-land phases of a flight. The data presented here is based on the analysis of 30
flights. Subjects were airline pilots from a major US carrier, flying regular revenue flights
in either the Boeing B-757 or B-767 aircraft—both modern “glass cockpit” aircraft
equipped with an identical automatic flight control system (AFCS). The AFCS is
composed of three major components: autopilot, autothrottle, and flight management
computer. Sitting in the cockpit jumpseat, the observer recorded a variety of AFCS and
aircraft variables. The following variables were used: changes in pitch and roll modes,
thrust modes, and whether the autopilot, flight-director, and autothrottle were “On” or
“Off.”

Analysis
Two types of data summaries were performed: mode occupancy and mode transitions. In
the former we wanted to see which mode configurations are commonly engaged; in the
latter, we were interested in identifying the transitions between these mode
configurations. (See [19] and [22] for a similar approach for describing human interaction
with complex systems.)

Mode occupancy. This analysis describes the relative frequency of occupying a certain
mode configuration. The AFCS has a variety of roll and pitch modes, and the pilot may
select any configuration. Figure 1 presents a table of these pitch and roll modes: the
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columns list the five modes of the roll component, and the rows list the eight modes of
the pitch component. Each cell in the table indicates a unique combination.

As mentioned earlier, mode configurations also indicate the level of automation selected
by the pilot. At one extreme, the crew may decide to fly the aircraft completely manually
(autopilot and autothrottle are disengaged, and the pilot is flying without reference to the
flight director guidance). In this case the “Manual Roll” mode and “Manual Pitch” modes
are engaged (upper-left corner of the table). At the other extreme, the crew may decide to
fly the aircraft completely automatically (autopilot and autothrottle are engaged, and the
aircraft follows the guidance from the flight management computer). In this case the
“Lateral Navigation” mode and “Vertical Navigation” (lower-right corner) are engaged.
Between these two extremes, 38 other mode configurations exist. The mode usage data
was entered and coded into a dataset. The number of times each mode combination was
visited during all flights was summarized and then transformed into relative frequencies.

         Figure 1.  Mode occupancy  (* indicate 0 < occupancy < 0.01)
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The table presented in Figure 1 is a map of the AFCS mode configuration space;
superimposed on it are the relative frequencies of occupying a given mode configuration.
Two observations can be made from this table: (1) only about 50 percent of the pitch/roll
mode configurations are occupied (at the 0.01 level), and (2) heavy occupancy is found in
three mode configurations: “Takeoff Mode”/“Heading Hold,” “Flight Level
Change”/“Heading Select,” and “Vertical Navigation”/“Lateral Navigation.” The first
mode configuration is associated with a mandatory procedure in the Airline—takeoffs are
only performed by engaging this mode configuration. The second is a semi-automatic
mode configuration in which the pilots can respond quickly to the type of air-traffic-
control demands prevalent in the terminal area; it is also a recommended mode
configuration (per standard operating procedures) when the aircraft is below 10,000 feet.
The third mode configuration is fully automatic mode combination that provides fuel
efficiency and navigation accuracy.

Mode transitions. This analysis describes the frequency of transitioning from one mode
configuration to another. Transitions may be initiated by the control system (automatic
transitions) or by the pilots (manual transitions). In both cases, the mode configuration
space and associated transitions are constrained by external factors. For example, the
transition to the “Glide Slope” mode can only occur after the glide slope signal is
received and processed by the AFCS. Therefore, during the course of flight the mode
configuration space changes dynamically.

The number and direction of transitions among all mode configurations were summarized
and then transformed into relative frequencies. Based on the previous analysis, we only
regarded those mode configurations that were occupied at the 0.01 level. These 15 mode
configurations, depicted as nodes, and transitions among them are presented in Figure 2.

The transition diagram in Figure 2 combines two qualities: mode configuration and mode
transition. It shows the possible paths that pilots traverse through the AFCS mode
configuration space. One objective of this analysis was to identify the constraints on the
flow of transitions. We hypothesized that this flow will reveal the pattern behind the
interaction between the pilots and the AFCS. We have tried several schemes for
organizing the nodes and the transitions. Yet, they all produced a criss-cross (“spaghetti”)
of arcs. Finally, we decided to let the data speak for itself [31]: we arranged the nodes
according to one simple rule—minimize the number arc intersections. When this was
finally done, a unique and unexpected pattern emanated.
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Figure 2.  Mode transitions

The organization of nodes that best satisfied the rule was according to the phases of a
flight. Thick arcs indicate many transitions into the “Lateral Navigation”/“Vertical
Navigation” mode configuration. This is a fully automatic mode configuration that crews
try to get into as fast as possible, as it provides many economic advantages. It serves as a
pivot, or an attractor, in this diagram. Once in the descent phase, the “Flight Level
Change”/“Heading Select” mode configuration is commonly used. In the approach phase,
a gradual transition into the “Glide Slope”/”Localizer” mode configuration is observed.
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Nevertheless, other transitions into touch-down were also observed. One such transition,
however—via the “Flight Level Change”/“Localizer” mode configuration—is potentially
dangerous at low altitudes.

The two summary analyses described in this section shed light on how modes are used
during normal revenue flights. We identified the mode configurations commonly used by
flight crews and the transitions among them. The data also revealed the flow of
transitions from takeoff to touchdown. Taken as a whole, the summary analysis showed
the pattern of pilot interaction with the automated flight control system of the Boeing B-
757/767 aircraft.

A FRAMEWORK FOR MODELING HUMAN-AUTOMATION
INTERACTION
From the above and other analysis performed on the field data, it appeared that mode
transitions are constrained by several factors: the airline’s standard operating procedures,
the phase of flight, the demands from the environment (e.g., air traffic control clearances)
and the possible mode configurations of the system. Therefore in order to model human
interaction with modes, we needed to synthesize these factors into a single framework.
The language of the framework is described first, then the elements, or modules, of the
framework are presented.

Language
The framework is based on the Statecharts and Operator-Function models. Both share the
same underlying theory—the finite-state-machine—which provides a medium for
describing the control behavior of a given system in terms of its states and transitions
[20]. The Operator Function Model is a task decomposition formalism used for task-
analysis and simulation [14]. Depending upon demands from the operational environment
and the requirements of the task (e.g., mandatory procedures), the model specifies the
progression of functions, tasks, and actions that a well-trained operator will execute.
Statecharts is a specification language for complex, real-time, reactive systems [12, 13].
Statecharts formalism allows for hierarchy and concurrency. Hierarchy is represented
with the notion of a super-state and sub-states; concurrency is provided by the notion of
independence and orthogonality such that a super-state containing two orthogonal sub-
states can be described as their product (.AND. relationship). Another feature of
Statecharts is its broadcasting mechanism—broadcasting the active states and events (that
trigger transitions) to the entire network.

These features of the Operator Function Model and Statecharts are well suited for
describing human interaction with a modal system: a finite-state-machine approach maps
quite well for describing modes and transitions; hierarchy allows us to deal with the
levels of modes in the machine; concurrency allows us to describe a multi-component
system in which several modes are simultaneously active; and broadcasting allows us to
connect, via transitions, all components into a synchronized system. Both the Operator
Function Model and Statecharts represent the control behavior of the system—what is
responsible for making the time-dependent decisions that influence human and machine
behavior.
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Modules in the Framework
This framework, called “Ofan,” uses the Statecharts language to describe the human-
machine-environment system as five concurrently active modules [7]:

(1) the Environment

(2) the Human Functions/Tasks,

(3) the Controls,

(4) the Plant

(5) the Displays

The Environment module describes the events in the operational environment as a
collection of concurrent states. Although we realize that this view of the environment is
oversimplified, it serves well for feeding triggering events into other modules in the
framework. The Human Functions/Tasks module describes how the operator executes
functions, tasks, and actions (modeled as states) and the events that trigger them. The
Controls module describes the system’s interface with the operator (e.g., buttons, dial
knobs). The Plant module describes the control system—its components, states, inputs,
and transitions. Closing the loop is the Displays module which describes the display
features as perceived by the operator.

There are many ways one can model a system. The selection of the modeling approach
depends on what is to be described and revealed [28]. Our goal in developing this
framework was twofold: (1) to describe the behavioral aspect of the entire system—the
human, the machine, and the environment, and (2) to use the description in order to
reveal the potential for human-automation problems. One possible method for detecting
such problems is by searching for mismatches between the states of the machine and the
corresponding states of the human and environment [15]. It is our working hypothesis
that most mode confusion problems occur (and therefore can be detected) at the point
when the necessary synchronization between the modules is lost (c.f., [27]).

ANALYSIS OF A MODE-CONFUSION INCIDENT
During the field experiment described earlier, some 28 incidents involving mode
confusion were observed and documented [8]. Using the Ofan framework we describe
here one of these incidents. This particular one involved confusion regarding the speed of
the aircraft (a Boeing B-757) while the crew was transitioning from one vertical mode to
another.

The aircraft was climbing to 11,000 feet per air traffic control (ATC) instructions, and a
fully automatic vertical mode called “Vertical Navigation” was active. In this mode the
speed target value is obtained from the flight management computer, which computes the
most economical speed (about 300 knots in this case). During the climb (at about 10,500
feet), ATC instructed the crew to reduce speed to 240 knots. The first officer engaged a
unique feature of “Vertical Navigation” called “speed intervene,” which allowed him to
enter the speed, specified by ATC, via the mode-control panel as a new reference
parameter (see Figure 3).
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As the aircraft neared 11,000 feet, it started the level-off maneuver by automatically
disengaging “Vertical Navigation” and engaging “Altitude Capture” mode. Once at
11,000 feet, the “Altitude Capture” mode disengaged and the “Altitude Hold” mode was
engaged automatically. During and after the maneuver, the speed was kept at 240 knots.
Shortly after, ATC instructed the crew to climb to 14,000. The first officer reached up to
the mode-control panel and engaged the “Vertical Navigation” mode in order to initiate
the climb. However, instead of climbing at a speed of 240 knots (as was still required by
ATC), the aircraft speed defaulted to 300 knots! The crew violated the ATC speed
restriction because they assumed that “Vertical Navigation” mode would “remember” the
speed reference parameter entered previously into the mode-control panel. However, the
“Vertical Navigation” mode, once re-engaged, defaulted to economy speed.

Description
The automatic flight control system of this aircraft has some eight modes to control the
vertical aspect of the flight (see Figure 1). Three modes are discussed here: “Altitude
Capture,” “Altitude Hold”—ALT HOLD, and “Vertical Navigation”—VNAV (see
Figure 3). With respect to the speed reference parameter (a constraint on mode behavior),
the “Altitude Capture” and “Altitude Hold” modes obtain this parameter from the mode-
control-panel. By default, the “Vertical Navigation” speed reference-parameter is
obtained from the flight management computer (which computes economy speed). Yet
another option, called “speed intervene,” allows the pilot to override the flight
management computer speed and enter a different speed. This is achieved by pressing the
“speed knob” and then dialing in the desired speed into the mode-control panel.

042

ALT
HOLD

EPR

SPD

0 0 011
ALTITUDESPEED

SPEED KNOB

LNAV

VNAV

FLCH

Figure 3.  Mode-control panel

Model
Figure 4 depicts part of the Ofan representation of this example. The Environment
module describes the demands (in this case ATC instructions) as a vector of several
elements. For example, speed restrictions can be either instructed directly by the air
traffic controller or mandated by a given procedure (e.g., a standard instrument
departure). The Human-Function/Tasks module encompasses the two functions
performed by the crew: (1) “modify,” and (2) “monitor.” The “modify” function
describes two tasks (modify speed, change altitude) as states. The “monitor” function
describes the two monitoring tasks as orthogonal states.
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The Controls module depicts the mode-control panel and its various knobs and buttons:
(1) the speed knob which, by pushing it, engages the “speed intervene” feature, and (2)
buttons for manually engaging modes (see Figure 3). The Plant module represents the
three modes discussed in this example: “Altitude Capture,” “Altitude Hold,” and
“Vertical Navigation.” Each mode is represented by two orthogonal sub-states: one
indicating the control behavior of the mode, and the other listing its reference parameters
(speed and altitude). For example, when in “Vertical Navigation” mode, the speed
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reference parameter is either obtained from the flight management computer (default
entry—depicted as a small arrow) or from the mode-control panel. When the source of
reference parameter is the flight management computer, the speed can be either computed
(economy speed) or selected (entered manually into the computer) by the pilot.
Transitions, either automatic or manual, in the Plant module are between (1) “Vertical
Navigation” mode and the level-off modes—an automatic transition (depicted as two
parallel lines), (2) “Altitude Capture” mode and the “Altitude Hold” mode—also an
automatic transition, and (3) “Altitude Hold” and “Vertical Navigation” mode—a manual
transition. Lastly, the Displays module describes the annunciation of the mode status on
the attitude-display indicator.

ANALYSIS
The mode problem occurred when air traffic control instructed the crew to climb from
11,000 to 14,000 feet. At that point, the crew re-engaged the “Vertical Navigation” mode.
However, they forgot to re-enter the speed reference-parameter (240 knots). As a result, a
speed violation occurred.

Once the automated flight control system transitions from any mode to “Vertical
Navigation” mode, the speed target value defaults to the economy speed. This is
represented in the “Vertical Navigation” mode description (Plant module) as the default
transition into flight management system (p10). The result of this discrepancy—between
the expected behavior (same speed) versus the actual behavior (speed change)—was a
violation on part of the crew.

The problem is detected when we note a mismatch between the states of the Environment
and Human-Function/Tasks modules and the state of the Plant module. While the
Environment and Human-Function/Tasks modules did not change their corresponding
states (speed is still restricted by air traffic control, and the crew is only required to
monitor it), the Plant did. The system, as a whole, lost the necessary synchronization
between its modules, and a mode confusion was born.

This specific mode problem, we argue, occurs because of a non-fluent mode transition
[26]. While transitions among several modes all maintain a global reference parameter
(speed), one transition does not. After transitioning into the “Vertical Navigation” mode,
a default entry changes the value of the global reference parameter into a local one
(economy speed). Furthermore, the layout of the controls and displays do not allude to
this default transition.

We believe that this unique structural feature of the design, which lies latent within the
software, may produce mode confusion when pilots are unaware of it. Furthermore, we
hypothesize that this latent structural feature may produce mode confusion in any type of
human-machine system. Therefore, the immediate goal of our research is to classify this
and other type of structural features into a taxonomy of mode discrepancy. Using such a
taxonomy, similar structural features found in a specification document of a new design
can be identified, analyzed, and corrected.
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CONCLUSIONS
Imagine an island with two mountains on it. A quantitative change, or
rise, in the level of the ocean may convert this single island into two
islands. This will happen at a point where the level of the ocean rises
higher than the saddle between the two mountains. The qualitative pattern
was latent before the quantity had impact on it... (Gregory Bateson, Mind
and Nature, 1979, p.58)

Our general approach for studying mode problems is to map human-automation
interaction. With the aid of such a map, or a qualitative pattern in Bateson’s terms, we
can view the entire territory—the human functions and tasks, the plant’s states, and the
environment. Once we have a complete map we can also predict the behavior of the
human-machine-environment system, given external and internal events. It may also
allow us to identify some of the structural features of the design that produce unwanted
results.

In this paper we described human interaction with complex system that employ modes
using two reciprocal views: (1) summary analysis of mode occupancy and transitions,
and (2) a formal specification of this interaction. The summary analysis provided a view,
from outside the system, on how it is used. We describe pilots’ transitions among the
possible mode configurations of the automated flight control system of the Boeing B-
757/767 aircraft. The pattern that emerged was constrained by the phases of flight,
standard operating procedures, the demands from the operational environment (mainly
ATC), and the mode configuration space of the system.

The formal specification of the human-automation interaction provides a view, from
inside the system, of its internal mechanisms. In developing this specification framework,
we have tried to captured the constraints on the system behavior and synthesize them into
the framework. We describe the standard operating procedures and phase of flight in the
Human-Function/Tasks module. The demands from ATC and the environment are
captured in the Environment module. Finally, the mode configuration space and the
interface with it are modeled in the Plant and Control/Display modules, respectively.

Our ongoing research effort is to develop a methodology for evaluating human-machine
systems. The first step in this direction is presented here—a framework for modeling the
human-machine environment system. The second step is to develop a taxonomy of
structural features that induce mode confusion. The interim goal is to provide heuristic
methods for early detection in a given design specification. Our long-term goal is to
develop a general theory of mode problems that will go beyond a catalog of past causes.

Human interaction with complex and automated control systems is a non-trivial problem.
It appears that its contribution to mishaps in domains that employ this technology is quite
significant. In this paper, we briefly cited some symptoms of this problem. We then
presented a two-way methodology for describing human-automation interaction. We
argue that only a cross-disciplinary effort, integrating methods from control theory,
system engineering, and human factors, will ever come close to ameliorating these
chronic problems in human interaction with complex control systems.
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